Introduction and ANN Structure.
- Biological neurons and artificial neurons.
- Model of an ANN.
- Activation functions used in ANNs.
- Typical classes of network architectures .
Mathematical Foundations and Learning mechanisms.
- Re-visiting vector and matrix algebra.
- State-space concepts.
- Concepts of optimization.
- Error-correction learning.
- Memory-based learning.
- Hebbian learning.
- Competitive learning.
Single layer perceptrons.
- Structure and learning of perceptrons.
- Pattern classifier - introduction and Bayes' classifiers.
- Perceptron as a pattern classifier.
- Perceptron convergence.
- Limitations of a perceptrons.
Feedforward ANN.
- Structures of Multi-layer feedforward networks.
- Back propagation algorithm.
- Back propagation - training and convergence.
- Functional approximation with back propagation.
- Practical and design issues of back propagation learning.
Radial Basis Function Networks.
- Pattern separability and interpolation.
- Regularization Theory.
- Regularization and RBF networks.
- RBF network design and training.
- Approximation properties of RBF.
Competitive Learning and Self organizing ANN.
- General clustering procedures.
- Learning Vector Quantization (LVQ).
- Competitive learning algorithms and architectures.
- Self organizing feature maps.
- Properties of feature maps.
Fuzzy Neural Networks.
- Neuro-fuzzy systems.
- Background of fuzzy sets and logic.
- Design of fuzzy stems.
- Design of fuzzy ANNs.
Applications
- A few examples of Neural Network applications, their advantages and problems will be discussed.
- The PAC Learning Framework
- Guarantees for finite hypothesis set – consistent case
- Guarantees for finite hypothesis set – inconsistent case
- Generalities
- Deterministic cv. Stochastic scenarios
- Bayes error noise
- Estimation and approximation errors
- Model selection
- Radmeacher Complexity and VC – Dimension
- Bias - Variance tradeoff
- Regularisation
- Over-fitting
- Validation
- Support Vector Machines
- Kriging (Gaussian Process regression)
- PCA and Kernel PCA
- Self Organisation Maps (SOM)
- Kernel induced vector space
- Mercer Kernels and Kernel - induced similarity metrics
- Reinforcement Learning
This will be taught in relation to the topics covered on Day 1 and Day 2
- Logistic and Softmax Regression
- Sparse Autoencoders
- Vectorization, PCA and Whitening
- Self-Taught Learning
- Deep Networks
- Linear Decoders
- Convolution and Pooling
- Sparse Coding
- Independent Component Analysis
- Canonical Correlation Analysis
- Demos and Applications
- Good understanding of mathematics.
- Good understanding of basic statistics.
- Basic programming skills are not required but recommended.
21 hours (usually 3 days including breaks)